Interaction of Methyl Orange with Chromium Trioxide

Anil Kumar Pandey Department of Chemistry, J.N College, Dhurwa, Ranchi, Jharkhand Email: pandeyanil08@gmail.com

Abstract:

Methyl Orange is a Nitrogen containing Organic acid. It was treated with Chromium Trioxide and some interesting results were obtained. The solid products were analysed in different physical parameters.

Key Words: Methyl Orange, Oxidation, Complexation.

Introduction:

Chromium Trioxide is very common oxidizing agent used for Oxidation of Organic substrates. In this work Methyl Orange is oxidized by Chromium Trioxide in different molar ratios. Four different products were prepared with product code MCR 1, MCR 2, MCR 3 and MCR 4, in the ratio of 1:0.5, 1:1, 1:1.5 and 1:2 respectively. All products were characterized on the basis of elemental analysis, I. R. Spectral studies and thermal analysis.

Chemicals Used:

Methyl Orange, Chromium Trioxide, Tertiary Butyl Alcohol, Acetone, etc. (The chemicals used were of A. R. grade)

Experimental Procedure:

Oxidation of methyl orange with CrO_3 was carried out in substrate: oxidant 1:0.5, 1:1, 1:1.5 and 1:2 molar ratios.

The desired strength of the oxidant was achieved by taking 0.01 mole of the substrate and 0.5g, 1g, 1.5g and 2g of CrO₃ in minimum volume of water respectively.

The substrate was mixed with minimum volume of distilled water (E-Merk). Solid CrO₃ was added with constant and vigorous stirring. Precaution was taken to avoid reaction being violet at the time of mixing the reagent. The solution of the substrate and the oxidant where mixed with constant and vigorous stirring for about 1.5 hour at 75^oC (No reaction was initiated at room temperature). The mixture wat left overnight for complete reaction. The product was collected as sample MCR1, MCR2, MCR3 and MCR4. (In substrate: oxidant 1:0.5, 1:1, 1:1.5 and 1:2 molar ratio respectively.) The solid obtained was then powdered in mortar and pestle. Successive washings with distilled water. Ethanol, dioxin and finally with acetone removed soluble impurities. The light brown complex obtained was insoluble in water and acetone. The product was dried and collected in an air tight bottle.

FTIR Analysis of Products:

The FTIR curves of MCR1, MCR2, MCR3 and MCR4 contain almost all the peak which are expected for their formulation. The FTIR band assigned for various groups are listed below.

MCR1	MCR2	MCR3	MCR4	Band	References
				Assignment	
1033.85	1033.85	1033.85	1033.85	$V_a(S=0)$	5a
1600.92	1602.85	1593.20	1595.13	-N = N-	5b
1384.89	1390.68	1384.89	1384.89	C - N	5c

1193.94	1193.94	1186.22	1186.22	N-CH ₃	5d
				(Symmetric)	
1120.64	1120.64	1120.64	1186.22	N-CH ₃	5e
				(Bending)	
3294.42	32803.92	3329.14	3332.99	Co-ordinated	5f
				H ₂ O	
570.93	572.86	563.21	565.14	V (Cr-N)	5g
433.98	507.28	532.35	430.13	V(Cr-O)	5h

Thermal Analysis of MCR1:

The complex having empirical formula $Cr_5C_{16}H_35N_3SO_{35}$ (MCR1) shows endothermic loss up to temperature 106.08^oC. This loss is anticipated due to loss of hydrated water (H₂O) molecule with mass loss 99.490 (theoretical loss 99.083). In the temperature range 106.08^oC – 358.54^oC. There is expected loss of SO₂, CO₂ and $\frac{1}{2}N_2$ with mass loss 165.818 (theoretical 166.083).

Further in the temperature range $358.54^{\circ}C - 458.08^{\circ}C$ there is expected loss of N₂ and CO₂ with mass loss 71.854 (theoretical 72.023).

Code	Temperatur	% Mass	Weight left	Empirical Formula	Loss in	Cumulative	Group loss
	e	left in	Experimenta	Predicted	Formula wt.	% Loss in	(Theoretical
	(⁰ C)	experimen	1		Experimenta	Formula wt.)
		t	(Theoretical)		<u> </u>	Experimenta	,
					(Theoretical)	1	
					11	(Theoretical)	
MC	R.T.	100		$Cr_5C_{16}H_{35}N_3SO_{35}$			
R 1			. 125				
	Upto		a local				
	100.0000	01	1005 059	a a u u ao	00.400	000/	55110
	106.08°C	91	1005.958	$Cr_5C_{16}H_{24}N_3SO_{29.5}$	99.490	(09%)	$5.5 H_2 O$
			(1000.303)		(99.085)	(08.05%)	
		111 1					
	Unto	76	840,140		165.818	24.000%	SO ₂ , CO ₂
	opto		(839.875)	$Cr_5C_{15}H_{24}N_2SO_{29.5}$	(166.083)	(24.024%)	$\frac{1}{2}N_{2}$
	358.54 ⁰ C			\mathbf{V}	ASSIL	()	, = = .2
	Upto	69.5	768.286				
	_		(768.117)	Cr C U O	71.854	31.500%	$N_{2,}CO_{2}$
	458.08°C			$Cr_5C_{14}\Pi_{24}O_{27.5}$	(72.023)	(30.515%)	
				+	1 States		

Table: Thermal Analysis of MCR1

Proposed Empirical formulation of MCR1 is $Cr_5C_{16}H_{35}N_3SO_{35}$ and the sequence of thermal degradation may be interpreted as follows

$$[Cr_{5}C_{16}H_{35}N_{3}SO_{35}] \xrightarrow{\text{Upto 106.08^{\circ}C}} [Cr_{5}C_{16}H_{24}N_{3}SO_{29.5}]$$

$$\xrightarrow{\text{Upto 358.54^{\circ}C}} [Cr_{5}C_{15}H_{24}N_{2}SO_{29.5}] \xrightarrow{\text{Above 458.08^{\circ}C}} [Cr_{5}C_{14}H_{24}O_{27.5}]$$

Thermal Analysis of MCR2:

The complex having empirical formula $CrC_6H_{14}5NSO_9$ (MCR2) shows endothermic loss up to temperature 104.86^oC. This loss is anticipated due to loss of hydrated water (H₂O) molecule with mass loss 19.693 (theoretical loss 18.015). In the temperature range 104. 86^oC – 333.68^oC. There is expected loss of $\frac{1}{2}$ SO₂, and $\frac{1}{2}$ N₂ with mass loss 45.951 (theoretical 46.036).

Further in the temperature range $333.68^{\circ}C - 520.90^{\circ}C$ there is expected loss of 2.5 H₂O with mass loss of 45.951 (theoretical 45.038).

© 2014 JETIR November 2014, Volume 1, Issue 6

-	1	1	1				
Code	Temperature	% Mass	Weight left	Empirical	Loss in	Cumulative	Group loss
	(^{0}C)	left in	Experimental	Formula	Formula wt.	% Loss in	(Theoretical)
	· · /	experiment	(Theoretical)	Predicted	Experimental	Formula wt.	
		· · · · ·	((Theoretical)	Experimental	
					(Theoretical)	(Theoretical)	
MCD	рт			CrC U NSO		(Theoretical)	
MCR	K.I.			$CIC_6\Pi_{14}NSO_9$			
2				\checkmark			
	Upto						
	104.86 ⁰ C	94	308.528	CrC.H. NSO.	19.693	06%	H_2O
			(310.206)		(18.015)	(05.489%)	-
			(0 - 0 - 0 - 0 - 0)	v	()	(0000000000)	
	Unto	80	262 577		45 051	2004	14 50
	Opto	80	202.377	$\mathrm{CrC}_{6}\mathrm{H}_{12}\mathrm{O}_{7}$	43.931	20%	⁷² SO ₂
			(262.492)	J.	(46.036)	(20.026%)	$\frac{1}{2}$ N ₂
	333.68°C			•			
	Upto	66	216.626				
			(217.539)		45.951	34%	
	520.90°C			$CrC_6H_7O_{4.5}$	(45.038)	(33.722%)	2.5 H ₂ O
		(Alternative)				` '	-
		1					
			18 CM 14	la presenta rearran		1000	

Table: Thermal Analysis of MCR2

Proposed Empirical formulation of MCR2 is CrC₆H₁₄NSO₉ and the sequence of thermal degradation may be interpreted as follows

JETIK.

 $[CrC_{6}H_{14}NSO_{9}] \xrightarrow{Upto 104.86^{\circ}C} [CrC_{6}H_{12}NSO_{8}]$

 $\xrightarrow{\text{Upto 333.68^{\circ}C}} [\text{CrC}_{6}\text{H}_{12}\text{O}_{7}] \xrightarrow{\text{Above 520.99^{\circ}C}} [\text{CrC}_{6}\text{H}_{7}\text{O}_{4.5}]$

Thermal Analysis of MCR3:

The complex having empirical formula $Cr_{10}C_{19}H_{72}N_3SO_{68}$ (MCR3) shows endothermic loss up to temperature 94.20^oC. This loss is anticipated due to loss of hydrated water (H₂O) molecule with mass loss 89.221 (theoretical loss 90.075). In the temperature range 94. $42^{\circ}C - 212.13^{\circ}C$. There is expected loss of 2CO₂ and O₂ with mass loss 118.961 (theoretical 120.016).

Further in the temperature range $212.13^{\circ}C - 364.37^{\circ}C$ there is expected loss of SO₂ and N₂ with mass loss of 109.048 (theoretical 109.078).

© 2014 JETIR November 2014, Volume 1, Issue 6

	-				- ·	~ • •	~ .
Code	Temperature	% Mass	Weight left	Empirical	Loss in	Cumulative	Group loss
	(°C)	left in	Experimental	Formula	Formula wt.	% Loss in	(Theoretical)
		experiment	(Theoretical)	Predicted	Experimental	Formula wt.	
					(Theoretical)	Experimental	
						(Theoretical)	
MCR	R.T.			$Cr_{10}C_{19}H_{72}N_{3}SO$			
3							
				¥			
	Unto						
	opto						
	$94.20^{\circ}C$	95.5	1893 465	Cr C H N SO	89 221	4 5%	5H2O
	9 H.20 C	20.5	(1892.611)	$CI_{10}C_{19}II_{62}IV_{3}SO$	(90.075)	(4543%)	51120
			(10)2.011)	↓	()0.075)	(4.54570)	
	Unto	80.5	1774 504		119.061	10.5%	200
	Opto	09.5	(1772, 440)	$Cr_{10}C_{17}H_{62}N_{3}SO$	(120.01()	10.5%	2 CO ₂
	212 1200		(1773.449)	\checkmark	(120.016)	(10.555%)	αO_2
	212.13°C			•			
	TT		1				
	Upto	84	1665.456				
	0		(1665.426)	Cr C H NO	109.048	16%	
	364.37°C	line -		$CI_{10}C_{17}II_{61}IIC_{56}$	(109.078)	(16.002%)	$SO_2 \& N_2$
			1605.976	+			
	Upto	81	(1605.448)	a a 11 155	59.480	19%	CO ₂ , ¹ / ₂ O ₂
	469.60 ⁰ C			$Cr_{10}C_{16}H_{61}NO_{53}$	(60.008)	(19.027%)	
						VA.	
				31	and the second se	2027	1

Table: Thermal Analysis of MCR3

Proposed Empirical formulation of MCR3 is $Cr_{10}C_{19}H_{72}SO_{68}$ and the sequence of thermal degradation may be interpreted as follows

 $[Cr_{10}C_{19}H_{72}N_{3}SO_{68}] \xrightarrow{Upto 94.20^{\circ}C} [Cr_{10}C_{19}H_{62}N_{3}SO_{63}]$ $\xrightarrow{Upto 212.13^{\circ}C} [Cr_{10}C_{17}H_{62}N_{3}SO_{57}] \xrightarrow{Upto 364.37^{\circ}C} [Cr_{10}C_{17}H_{61}NO_{56}]$ $\xrightarrow{Upto 469.60^{\circ}C} [Cr_{10}C_{16}H_{61}NO_{53}]$

Thermal Analysis of MCR4:

The complex having empirical formula $Cr_{10}C_{19}H_{66}N_3SO_{68}$ (MCR4) shows endothermic loss up to temperature 111.62^oC. This loss is anticipated due to loss of hydrated water (H₂O) molecule with mass loss 217.431 (theoretical loss 216.180). In the temperature range 111. 62^oC – 206.39^oC. There is expected loss of 5CO₂ with mass loss 217.431 (theoretical 220.045).

Further in the temperature range $206.39^{\circ}C - 345.87^{\circ}C$ there is expected loss of SO₂ and N₂ ¹/₂ N₂ and 3CO₂ with mass loss of 237.197 (theoretical 238.106).

© 2014 JETIR November 2014, Volume 1, Issue 6

www.jetir.org (ISSN-2349-5162)

	1	1	1			I	1
Code	Temperature	% Mass	Weight left	Empirical	Loss in Formula	Cumulative	Group loss
	(⁰ C)	left in	Experimental	Formula	wt.	% Loss in	(Theoretical)
		experim	(Theoretical)	Predicted	Experimental	Formula wt.	
		ent			(Theoretical)	Experimental	
						(Theoretical)	
MCR	R.T.			$Cr_{10}C_{19}H_{66}N_{3}SC$			
4				↓ ↓			
				•			
	Upto						
	-						
	111.62 ⁰ C	89	1759.213	Cr.,C.,H.,N.SC	217.431	11%	$12H_2O$
			(1760.464)	- 10 - 19 - 42 - 3	(216.180)	(10.937%)	
				v			
	Upto	78	1541.782	Cr C H NSC	217.431	22%	$5CO_2$
			(1539.168)	$CI_{10}C_{14}II_{42}IV_{3}OC$	(220.045)	(22.132%)	
	206.39 ^o C		``´´´	↓			
	Upto	66	1304.585				
	1		(1303.673)		237.197	34%	$SO_2 \cdot N_2$
	345.87°C		()	$Cr_{10}C_{11}H_{42}O_{38}$	(238.160)	(34.046%)	$\frac{1}{2}$ N ₂ .
			1215.636		((*********	, = = .2,
	Unto	61.5	(1216.567)		88.949		$3CO_2$
	$47552^{\circ}C$		(1210.007)	$Cr_{10}C_{0}H_{42}O_{24}$	(88,018)		$2CO_2$
	175.52 C	ACT		10 9 42 34	(00.010)	38.5%	2002
		-46			and the second sec	(38 452%)	
						(30.75270)	1

Table: Thermal Analysis of MCR4

Proposed Empirical formulation of MCR4 is $Cr_{10}C_{19}H_{66}N_3SO_{68}$ and the sequence of thermal degradation may be interpreted as follows.

 $[Cr_{10}C_{19}H_{66}N_{3}SO_{68}] \xrightarrow{Upto 111.62^{\circ}C} [Cr_{10}C_{19}H_{42}N_{3}SO_{56}]$

REFRENCES

- 1. C.B Powar, G.R Chatwal, Himalaya Publishing House. 5th Ed., 171(2006).
- 2. A.K. Laha, A.B. Kulkarni, J. Sc. Ind. Res, 34, 605(1985)
- 3. Robert M. Silverstein, Francis X. Webster, Spectrometry Identification of Organic Compounds, Willy India 6th Ed., a.18, b.165, c.183, d.185, e.217(2007).
- 4. Nakamoto K., Infrared and Raman Spectra of Inorganic and Coordinated Compounds, Part B, John Wiley, New York, Ed.5, a.1, b.4, c.54, d.60, e.65, f.75, g.87, h.88, I.90 (1997)
- 5. Gamo I., Bull. Chem. Soc. Japan, 34, 760, 765, 1430, 1433 (1961).
- 6. Fujita J., Nakamoto K., and Kobyashi, J.M.Chem.Soc.78, 3963(1956).
- 7. Dyer J.R., Applications of Absorption Spectroscopy of Organic Compounds, Prentice Hall of India, 18th print, a.34, b.37, (1991).